If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40t-4.9t^2=50
We move all terms to the left:
40t-4.9t^2-(50)=0
a = -4.9; b = 40; c = -50;
Δ = b2-4ac
Δ = 402-4·(-4.9)·(-50)
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-\sqrt{620}}{2*-4.9}=\frac{-40-\sqrt{620}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+\sqrt{620}}{2*-4.9}=\frac{-40+\sqrt{620}}{-9.8} $
| 40t-4.9^2=50 | | 36/5x=1 | | 22/3x=1 | | 1|2x+3=-(x+1) | | 7(3)+3(x)=78 | | 54=3/v | | (6x+44°)+(-10x+65°)=117° | | x+x-5+3x+10=180 | | 2y+y-16+118=180 | | 2y+3y+45=180 | | 5x-3=7x+5. | | Sx4+39=127 | | 3+x/5=6+x/2 | | x/3=31/6 | | 7+4b=b=3 | | s2-1=2 | | 2x+5x+15x=22x | | 4x÷2=16 | | (2⋅3)2−5=x5 | | 8.50*3=x | | 25x-5(8x-7)=155 | | 3y+4=223y=y= | | (3x+4)x=7 | | 3x^2+4x–7=0 | | 3x2+4x–7=0 | | 16x2−240x+896=0 | | 8(10-k)=2×k | | 18÷9=w | | m3-1=7 | | 9n+7=18n+1 | | 1/2x-3/4=1/8x-1/4 | | (2x-111)=(x+9) |